Principal minor
   HOME





Principal minor
In linear algebra, a minor of a matrix is the determinant of some smaller square matrix generated from by removing one or more of its rows and columns. Minors obtained by removing just one row and one column from square matrices (first minors) are required for calculating matrix cofactors, which are useful for computing both the determinant and inverse of square matrices. The requirement that the square matrix be smaller than the original matrix is often omitted in the definition. Definition and illustration First minors If is a square matrix, then the ''minor'' of the entry in the -th row and -th column (also called the ''minor'', or a ''first minor'') is the determinant of the submatrix formed by deleting the -th row and -th column. This number is often denoted . The ''cofactor'' is obtained by multiplying the minor by . To illustrate these definitions, consider the following matrix, \begin 1 & 4 & 7 \\ 3 & 0 & 5 \\ -1 & 9 & 11 \\ \end To compute the minor and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathematics), matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as line (geometry), lines, plane (geometry), planes and rotation (mathematics), rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to Space of functions, function spaces. Linear algebra is also used in most sciences and fields of engineering because it allows mathematical model, modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Positive-definite Matrix
In mathematics, a symmetric matrix M with real entries is positive-definite if the real number \mathbf^\mathsf M \mathbf is positive for every nonzero real column vector \mathbf, where \mathbf^\mathsf is the row vector transpose of \mathbf. More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number \mathbf^* M \mathbf is positive for every nonzero complex column vector \mathbf, where \mathbf^* denotes the conjugate transpose of \mathbf. Positive semi-definite matrices are defined similarly, except that the scalars \mathbf^\mathsf M \mathbf and \mathbf^* M \mathbf are required to be positive ''or zero'' (that is, nonnegative). Negative-definite and negative semi-definite matrices are defined analogously. A matrix that is not positive semi-definite and not negative semi-definite is sometimes called ''indefinite''. Some authors use more general definitions of definiteness, permitting the matrices to be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adjoint Operator
In mathematics, specifically in operator theory, each linear operator A on an inner product space defines a Hermitian adjoint (or adjoint) operator A^* on that space according to the rule :\langle Ax,y \rangle = \langle x,A^*y \rangle, where \langle \cdot,\cdot \rangle is the inner product on the vector space. The adjoint may also be called the Hermitian conjugate or simply the Hermitian after Charles Hermite. It is often denoted by in fields like physics, especially when used in conjunction with bra–ket notation in quantum mechanics. In finite dimensions where operators can be represented by matrices, the Hermitian adjoint is given by the conjugate transpose (also known as the Hermitian transpose). The above definition of an adjoint operator extends verbatim to bounded linear operators on Hilbert spaces H. The definition has been further extended to include unbounded '' densely defined'' operators, whose domain is topologically dense in, but not necessarily equal to, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adjoint
In mathematics, the term ''adjoint'' applies in several situations. Several of these share a similar formalism: if ''A'' is adjoint to ''B'', then there is typically some formula of the type :(''Ax'', ''y'') = (''x'', ''By''). Specifically, adjoint or adjunction may mean: * Adjoint of a linear map, also called its transpose in case of matrices * Hermitian adjoint (adjoint of a linear operator) in functional analysis * Adjoint endomorphism of a Lie algebra * Adjoint representation of a Lie group * Adjoint functors in category theory * Adjunction (field theory) * Adjunction formula (algebraic geometry) * Adjunction space in topology * Conjugate transpose of a matrix in linear algebra * Adjugate matrix, related to its inverse * Adjoint equation * The upper and lower adjoints of a Galois connection in order theory * The adjoint of a differential operator with general polynomial coefficients * Kleisli adjunction * Monoidal adjunction * Quillen adjunction * Axiom of adjunction In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Felix Gantmacher
Felix Ruvimovich Gantmacher () (23 February 1908 – 16 May 1964) was a Soviet mathematician, professor at Moscow Institute of Physics and Technology, well known for his contributions in mechanics, linear algebra and Lie group theory. In 1925–1926 he participated in seminar guided by Nikolai Chebotaryov in Odessa and wrote his first research paper in 1926. His book ''Theory of Matrices'' (1953) is a standard reference of linear algebra. It has been translated into various languages including a two-volume version in English prepared by Joel Lee Brenner, Donald W. Bushaw, and S. Evanusa. George Herbert Weiss noted that "this book cannot be recommended too highly as it contains material otherwise unavailable in book form". Gantmacher collaborated with Mark Krein on ''Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems''. In 1939 he contributed to the classification problem of the real Lie algebra In mathematics, a Lie algebra (pronounced ) is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anticommutativity
In mathematics, anticommutativity is a specific property of some non-commutative mathematical operations. Swapping the position of two arguments of an antisymmetric operation yields a result which is the ''inverse'' of the result with unswapped arguments. The notion '' inverse'' refers to a group structure on the operation's codomain, possibly with another operation. Subtraction is an anticommutative operation because commuting the operands of gives for example, Another prominent example of an anticommutative operation is the Lie bracket. In mathematical physics, where symmetry is of central importance, or even just in multilinear algebra these operations are mostly (multilinear with respect to some vector structures and then) called antisymmetric operations, and when they are not already of arity greater than two, extended in an associative setting to cover more than two arguments. Definition If A, B are two abelian groups, a bilinear map f\colon A^2 \to B is ant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alternating Multilinear Map
In mathematics, more specifically in multilinear algebra, an alternating multilinear map is a multilinear map with all arguments belonging to the same vector space (for example, a bilinear form or a multilinear form) that is zero whenever any pair of its arguments is equal. This generalizes directly to a module over a commutative ring. The notion of alternatization (or alternatisation) is used to derive an alternating multilinear map from any multilinear map of which all arguments belong to the same space. Definition Let R be a commutative ring and , W be modules over R. A multilinear map of the form f: V^n \to W is said to be alternating if it satisfies the following equivalent conditions: # whenever there exists 1 \leq i \leq n-1 such that x_i = x_ then . # whenever there exists 1 \leq i \neq j \leq n such that x_i = x_j then . Vector spaces Let V, W be vector spaces over the same field. Then a multilinear map of the form f: V^n \to W is alternating if it satisfies the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bilinear Map
In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. A bilinear map can also be defined for modules. For that, see the article pairing. Definition Vector spaces Let V, W and X be three vector spaces over the same base field F. A bilinear map is a function B : V \times W \to X such that for all w \in W, the map B_w v \mapsto B(v, w) is a linear map from V to X, and for all v \in V, the map B_v w \mapsto B(v, w) is a linear map from W to X. In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed. Such a map B satisfies the following properties. * For any \lambda \in F, B(\lambda v,w) = B(v, \lambda w) = \lambda B(v, w). * The map B is additive in both components: if v_1, v_2 \in V an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exterior Power
In mathematics, the exterior algebra or Grassmann algebra of a vector space V is an associative algebra that contains V, which has a product, called exterior product or wedge product and denoted with \wedge, such that v\wedge v=0 for every vector v in V. The exterior algebra is named after Hermann Grassmann, and the names of the product come from the "wedge" symbol \wedge and the fact that the product of two elements of V is "outside" V. The wedge product of k vectors v_1 \wedge v_2 \wedge \dots \wedge v_k is called a ''blade of degree k'' or ''k-blade''. The wedge product was introduced originally as an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogues: the magnitude of a -blade v\wedge w is the area of the parallelogram defined by v and w, and, more generally, the magnitude of a k-blade is the (hyper)volume of the parallelotope defined by the constituent vectors. The alternating property that v\wedge v=0 implies a skew-s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wedge Product
A wedge is a triangular shaped tool, a portable inclined plane, and one of the six simple machines. It can be used to separate two objects or portions of an object, lift up an object, or hold an object in place. It functions by converting a force applied to its blunt end into forces perpendicular ( normal) to its inclined surfaces. The mechanical advantage of a wedge is given by the ratio of the length of its slope to its width..''McGraw-Hill Concise Encyclopedia of Science & Technology'', Third Ed., Sybil P. Parker, ed., McGraw-Hill, Inc., 1992, p. 2041. Although a short wedge with a wide angle may do a job faster, it requires more force than a long wedge with a narrow angle. The force is applied on a flat, broad surface. This energy is transported to the pointy, sharp end of the wedge, hence the force is transported. The wedge simply transports energy in the form of friction and collects it to the pointy end, consequently breaking the item. History Wedges have existed fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Multilinear Algebra
Multilinear algebra is the study of Function (mathematics), functions with multiple vector space, vector-valued Argument of a function, arguments, with the functions being Linear map, linear maps with respect to each argument. It involves concepts such as Matrix (mathematics), matrices, tensors, multivectors, System of linear equations, systems of linear equations, Higher-dimensional space, higher-dimensional spaces, Determinant, determinants, inner product, inner and outer product, outer products, and Dual space, dual spaces. It is a mathematical tool used in engineering, machine learning, physics, and mathematics. Origin While many theoretical concepts and applications involve Vector space, single vectors, mathematicians such as Hermann Grassmann considered structures involving pairs, triplets, and multivectors that generalize Vector (mathematics and physics), vectors. With multiple combinational possibilities, the space of multivectors expands to 2''n'' dimensions, where ''n'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cauchy–Binet Formula
In mathematics, specifically linear algebra, the Cauchy–Binet formula, named after Augustin-Louis Cauchy and Jacques Philippe Marie Binet, is an identity for the determinant of the product of two rectangular matrices of transpose shapes (so that the product is well-defined and square). It generalizes the statement that the determinant of a product of square matrices is equal to the product of their determinants. The formula is valid for matrices with the entries from any commutative ring. Statement Let ''A'' be an ''m''×''n'' matrix and ''B'' an ''n''×''m'' matrix. Write 'n''for the set , and \tbinomm for the set of ''m''-combinations of 'n''(i.e., subsets of 'n''of size ''m''; there are \tbinom nm of them). For S\in\tbinomm, write ''A'' 'm''''S'' for the ''m''×''m'' matrix whose columns are the columns of ''A'' at indices from ''S'', and ''B''''S'', 'm''/sub> for the ''m''×''m'' matrix whose rows are the rows of ''B'' at indices from ''S''. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]